30 research outputs found

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    A Social Internet of Things Smart City Solution for Traffic and Pollution Monitoring in Cagliari

    Get PDF
    In the last years, the smart city (SC) paradigm has been deeply studied to support sustainable mobility and to improve human living conditions. In this context, a new SC based on the Social Internet of Things paradigm is presented in this article. Starting from the tracking of all vehicles (that is, private and public) and pedestrians, integrated with air quality measurements (that is, in real time by mobile and fixed sensors), the system aims to improve the viability of the city, both for pedestrian and vehicular users. A monitoring network based on sensors and devices hosted on board in local public transport allows real-time monitoring of the most sensitive areas both from traffic congestion and from an environmental point of view. The proposed solution is equipped with an appropriate intelligence that takes into account instantaneous speed, type of traffic, and instantaneous pollution data, allowing to evaluate the congestion and pollution condition in a specific moment. Moreover, specific tools support the decisions of public administration facilitating the identification of the most appropriate actions for the implementation of effective policies relating to mobility. All collected data are elaborated in real time to improve traffic viability suggesting new directions and information to citizens to better organize how to live in the city

    Extrafoveal Müller cells detection in vivo in the human retina: A pilot study based on optical coherence tomography.

    Get PDF
    Abstract Muller cells (MC) represent a key element for the metabolic and functional regulation of the vertebrate retina. The aim of the present study was to test the feasibility of a new method for the in-vivo detection and quantification of extrafoveal MC in human retina. We developed a new approach to isolate and analyse extrafoveal MC in vivo, starting from structural optical coherence tomography data. Our pilot investigation was based on the optical properties of MC, which are known to not interfere with the light reaching the outer retinal structures. We reconstructed MC in the macular region of 18 healthy subjects and the quantitative analyses revealed ~42,000/9 mm2 cells detected. Furthermore, we included 2 patients affected by peripheral intraocular melanoma, with macular sparing, needing surgical enucleation. We used these two eyes to perform a qualitative comparison between our reconstructions and histological findings. Our study represents the first pilot investigation dedicated on the non-invasive isolation and quantification of MC, in-vivo, in human retina. Although we are aware that our study has several limitations, first of all related with the proper detection of foveal MC, because of the peculiar z-shape morphology, this approach may open new opportunities for the non-invasive in vivo analysis of MC, providing also potential useful perspectives in retinal diseases

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients

    Estimation of qth-Order Fractal Dimensions

    No full text

    Slow Motion and Zoom in HD Digital Videos Using Fractals

    No full text
    Slow motion replay and spatial zooming are special effects used in digital video rendering. At present, most techniques to perform digital spatial zoom and slow motion are based on interpolation for both enlarging the size of the original pictures and generating additional intermediate frames. Mainly, interpolation is done either by linear or cubic spline functions or by motion estimation/compensation which both can be applied pixel by pixel, or by partitioning frames into blocks. Purpose of this paper is to present an alternative technique combining fractals theory and wavelet decomposition to achieve spatial zoom and slow motion replay of HD digital color video sequences. Fast scene change detection, active scene detection, wavelet subband analysis, and color fractal coding based on Earth Mover's Distance (EMD) measure are used to reduce computational load and to improve visual quality. Experiments show that the proposed scheme achieves better results in terms of overall visual quality compared to the state-of-the-art techniques

    Searching the social Internet of Things by exploiting object similarity

    No full text
    One of the major issues of Internet of Things (IoT) is discovering which objects are able to execute specific services and provide the required data for applications to be correctly accomplished. In recent years, the Social IoT (SIoT) paradigm, where objects establish social-like relationships, has become popular as it presents several interesting features to improve network navigability and implement efficient discovery methods. This is due to the intrinsic capability of a SIoT network to come to a solution for a query and quickly reach the required object with a small number of hops, using object friendships. In this paper, a SIoT-based object discovery mechanism is proposed. The novelty of this algorithm is that the next hop to query is chosen based on two properties: one that is intrinsic to the network and is based on object friendships, and an external one that takes into account the similarity between the object and the query. Simulation results prove that a correct balance between the two introduced properties is needed and that the proposed algorithm is able to efficiently solve queries, independently of their popularity and complexity
    corecore